
US. Department of Energy

Laboratory

UCRL-MA-140943

ParaDyn A Parallel
Nonlinear, Explicit, Three-
Dimensional Finite-
Element Code for Solid
and Structural Mechanics
User Manual

C. G. Hoover, A. J. De Groot, R. J. Sherwood

June 1,2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

ParaDyn

A Parallel Nonlinear, Explicit,
Three-Dimensional Finite-Element

Code for Solid and Structural Mechanics

User Manual

Carol G. Hoover, Anthony J. De Groot, Robert J. Sherwood

Methods Development Group
Mechanical Engineering

ParaDyn Version 1.01
June 2000

ParaDyn User Manual Preface

Preface

This User Manual documents the collaborative code development work with my colleagues, Tony
De Groot and Bob Sherwood. Our efforts represent the majority of the original work in the parallel
algorithm design and development for the ParaDyn Project. Doug Speck, Elsie Pierce, and Vic
Castillo are now substantive contributors to the ParaDyn Project. Doug and Elsie, in particular,
have made it possible to quickly design flexible binary databases (MILI) and have developed
significant enhancements to the GRIZ visualization software. Their work paves the way for the
visualization capabilities needed when using parallel computers with hundreds and thousands of
processors.

Analysts provide the insights needed to turn our software development into an effective production
tool for finite-element engineering analysis. At the Lawrence Livermore National Laboratory
(LLNL) Dan Badders, Tony Lee, and Tony DePiero entered the turbulent waters of massively
parallel computers earliest and have provided very valued input to our code development efforts.

Raju Namburu and Photios Papados are collaborators from the Army Research Laboratory (ARL)
and the Engineer Research and Development Center (ERDC). They led the way to the first
multimillion element calculations on Department of Defense high performance computers. John
Benner and colleagues from the Los Alamos National Laboratory (LANL) were the first to use the
ParaDyn program on over 1000 processors.

We especially appreciate the very valuable comments and support that our collaborators from ARL,
ERDC, and LANL have provided for our code development efforts.

Carol Hoover
Methods Development Group
Mechanical Engineering Department
Lawrence Livermore National Laboratory
Livermore, California 9455 1-7808
925-422-1556 hooverl @llnl.gov

Version 1.01 1

mailto:llnl.gov

Abstract ParaDyn User Manual

Abstract

ParaDyn is a parallel version of the DYNA3D computer program, a three-dimensional explicit
finite-element program for analyzing the dynamic response of solids and structures. The ParaDyn
program has been used as a production tool for over three years for analyzing problems which
range in size from a few tens of thousands of elements to between one-million and ten-million
elements. ParaDyn runs on parallel computers provided by the Department of Energy Accelerated
Strategic Computing Initiative (ASCI) and the Department of Defense High Performance
Computing and Modernization Program. Preprocessing and post-processing software utilities and
tools are designed to facilitate the generation of partitioned domains for processors on a massively
parallel computer and the visualization of both resultant data and boundary data generated in a
parallel simulation. This manual provides a brief overview of the parallel implementation;
describes techniques for running the ParaDyn program, tools and utilities; and provides examples
of parallel simulations.

Version 1.01 11

ParaDyn User Manual TABLE OF CONTENTS

TABLE OF CONTENTS

PREFACE .. 1

..
ABSTRACT ... 11

1.0 BACKGROUND .. 1

2.0 OVERVIEW OF PARADYN .. 3

2.1

2.2

2.3

2.4

2.5

INTRODUCTION .. 3

THE PARALLEL FINITE-ELEMENT MODEL ... 4

PARALLEL PERFORMANCE AND SCALABILITY .. 8

SCALABLE PARALLEL CONTACT ALGORITHMS .. 9
PARALLEL LOCAL CONTACT .. 11

PARALLEL AUTOMATIC CONTACT ... 12

CONCLUDING REMARKS ON PARALLEL CONTACT 13

BOUNDARY CONDITIONS AND CONSTRAINTS ... 13

3.0 ANALYSIS WITH PARADYN .. 16

3.1

3.2

3.3

3.4

3.5

3.6

3.7

THE PARADYN SOFTWARE SET ... 16

PATH VARIABLE FOR PARADYN .. 17

PARTITIONING A MODEL .. 18

FILE NAME SEQUENCES .. 25

PARADYN COMMAND LINES .. 26
PARADYN RUN INTERACTIVELY ... 28

PARADYN RUN WITH BATCH .. 29

VISUALIZING PARADYN RESULTS ... 30
MIL1 DATABASE m E S .. 31

COMBINING PARALLEL DATABASES ... 32

SUMMARIZED STEPS FOR USING PARADYN .. 33

4.0 INPUT FOR PARALLEL SIMULATIONS ... 36

4.1 STATIC INITIALIZATION AND DYNAMIC ANALYSIS ... 36

4.2 THE NIKE-DYNA LINK FILE .. 37

4.3 MULTIPLE VERSIONS OF RUNNING RESTART FILES .. 38

4.4 NODAL FORCE OUTPUT .. 39
4.5 TOPAZ3D TEMPERATURE INPUT. .. 41

... Version 1.01 111

ParaDyn User Manual TABLE OF CONTENTS

4.6 TAURUS DATABASE FILES .. 41

5.0 FUTURE ENHANCEMENTS .. 45

REFERENCES .. 46

.

Version 1.01 iv

ParaDvn User Manual Background

BACKGROUND

Significant speed gains (for example, factors of sixty or more on sixty-four processors) are being
achieved for engineering design calculations on parallel computers with as few as a hundred
processors using ParaDyn, the parallel version of the DYNA3D program [l]. The latest massively
parallel computers with thousands of processors now make it possible to design engineering
models for mechanical system analysis with multiple component parts as well as to add more detail
and complexity in the models for components. ParaDyn and DYNA3D are explicit finite-element
programs designed to solve for the nonlinear, transient response of solids and structures. The two
programs, contained within a single source, are developed by the Methods Development Group at
the Lawrence Livermore National Laboratory (LLNL). The web site, http://www.llnl.gov/eng/
mdg/mdg_home.html, provides general information and online documentation about the complete
family of themomechanical programs developed in the Methods Development Group.

Parallel computers are now commonplace in our computing environment. Computers with speeds
ranging from 1 to 100 TeraOps (10l2 to 1014 operations per second) and thousands of processors
will be delivered through the year 2004 to the Accelerated Strategic Computing Initiative (ASCI)
Program. These computers dominate the high-end computing at LLNL. More modest parallel
workstation clusters with ten or twelve processors support the Institutional Programs at LLNL.
ParaDyn is implemented using the Message Passing Interface (MPI) standard. This standard makes
it possible to develop parallel engineering applications that run on both distributed memory
massively parallel computers and also shared memory workstation clusters. A summary of the
computer resources at LLNL may be viewed at http://www.llnl.gov/asci/platforms and http://
www.llnl.gov/sccd/FAST.resources.html.

The Department of Defense High Performance Computing and Modernization Program is also a
very strong participant in acquiring hardware and developing software for next-generation
massively parallel computers. Computer characteristics in terms of size, speed, and number of
processors at the DOD Major Shared Resource Centers (MSRCs) are summarized in the links
provided by the Program Office web site at http://www.hpcmo.hpc.mil. These data illustrate the
continuing significant increase in our parallel computational speeds and capacities.

ParaDyn is a parallel production program. Code development efforts are now directed toward
optimizing the parallel algorithms, developing parallel preprocessing and post-processing
software, and developing software tools for engineering optimization studies. Concurrent with the

Version 1.01 1

http://www.llnl.gov/eng
http://www.llnl.gov/asci/platforms
http://www.hpcmo.hpc.mil

Background ParaDrn User Manual

parallel development effort, many code developers for the DYNA3D program are contributing new
algorithms, elements, and material models to enhance the mechanics modeling capabilities. A
single source encompassing both the ParaDyn and DYNA3D algorithms makes it possible to
naturally migrate the DYNA3D enhancements into the production ParaDyn program. Finally,
coupled programs for thermal, mechanical, and fluid analysis are being designed for parallel
computers. A production capability for coupled analysis is possible in the next few years.

Version 1.01 2

ParaDyn User Manual Introduction

2.0 OVERVIEW OF PARADYN

2.1 Introduction

Advances in the development of parallel algorithms for explicit finite-element analysis and domain
partitioning techniques have led to scalable production applications using ParaDyn. This has
resulted in several benefits to our engineering design programs. Firstly, calculations are now
performed in a day or less for problems that previously ran over several weeks. Secondly, new
models are being generated for mesh sizes between one-million and ten-million elements. This is
an order of magnitude larger than the largest models possible in the past. Finally, longer time
simulations (problems running for a few million steps) for small to moderate sized problems are
now being run on both massively parallel computers and workstation clusters.

Analysts play an important new role in preparing models for parallel computers. The meshes are
increasingly much larger and more complex. New validation tools are needed for the mesh
generation step, specification of boundary loads and constraints, and defining facets on interfaces.
In addition, the modeling of contact interfaces can have a significant effect on the parallel
performance and scalability. Optimizing the performance and achieving scalability of parallel
contact algorithms is particularly challenging. Two distinct forms of parallel contact algorithms
have been developed in ParaDyn and will be discussed in the sections on parallel contact.

Current and future parallel algorithm development is focused on contact algorithm research and
also on providing the necessary automated modeling tools for the analyst. The development of the
GRID visualization tool [2] based on the new MIL1 (Mesh YO Library) software [3] is one step
toward achieving this goal. In addition, we anticipate further research in numerical methods to
enhance the scalability of parallel contact algorithms.

This manual is available in PDF form for interactive viewing. In some sections the text is displayed
in either red or blue. The blue highlighting indicates text passages that are included in a version of
the manual designed for a specific computer or site location. Thus, the blue text indicates
conditional text which has been generated with the particular version of the manual being viewed.
Red text is used to highlight cautionary notes. For instance, red text is used to highlight a warning
message to copy output files between ParaDyn runs when those files would otherwise be
overwritten by a subsequent run in the same directory.

Version 1.01 3

The Parallel Finite-Element Model ParaDyn User Manual

To prepare input data and select control options and flags for the ParaDyn program, follow the
discussions in the DYNA3D User Manual [11. An online manual for DYNA3D is available on the
home page for the Methods Development Group, http://www.llnl.gov/eng/mdg/mdg_home.html.
Instructions for using the new preprocessing and post-processing software for parallel simulations
are included in this manual. In this manual the term preprocessing refers to the software used after
the mesh generation step to prepare the model for the analysis with the ParaDyn program. More
specifically it refers to the partitioning of the model. Computer-specific instructions and example
problems are provided here to illustrate how to run a ParaDyn analysis on a parallel computer.
Further documentation for the preprocessing software for partitioning meshes for ParaDyn is
available online with the ParaDyn software. This documentation plus installation instructions are
also available in an LLNL UCFU Report [4]. And finally, some standard features in DYNA3D
requiring additional documentation for a parallel analysis are included in this manual.

-

A set of typeface conventions is followed throughout this manual to allow the reader to easily
distinguish between commands, parameters, and computer generated text. Commands
that appear in bold type should be entered verbatim. Parameters that appear in italic type should
be given values when included in the input. Computer generated text, such as error
messages or default file names, is printed in a typewriter-like (Courier) font. In text
passages file names appear in italic type for clarity.

The next sections provide introductory discussions about parallel algorithms and computers.
Section 2.2 discusses the parallel finite-element model and describes partitioning methods. Section
2.3 discusses parallel performance and scalability measurements. Section 2.4 characterizes contact
interfaces and their implementation in parallel. This section concludes with guidelines for
modeling contact interfaces with parallel algorithms.

2.2 The Parallel Finite-Element Model

A successful strategy for parallel implementation of the explicit finite-element method is based on
dividing the mesh among the processors and executing ParaDyn on a subdomain in each processor
[5] . The elements from the mesh are divided into subdomains so that each processor has
approximately the same amount of calculations to perform in a timestep. The nodes on the
boundaries of a subdomain are referred to as shared nodes. Nodal force data for shared nodes are
communicated between processors when the nodal force updates are calculated. The nodal points

Version 1.01 4

http://www.llnl.gov/eng/mdg/mdg_home.html

ParaDyn User Manual The Parallel Finite-Element Model

on the subdomain boundaries may be duplicated (shared) in more than one processor. Mesh
partitioning is the strategy for dividing the problem into subdomains and mapping subdomains to
processors. This is illustrated for two processors in Figure 1.

b

Subdomains

Processor 0

Processor 1

(b)

Figure 1. Two subdomains on a finite-element mesh. (a) The original mesh with 48 elements
is partitioned into two subdomains with 24 elements each. (b) The calculations involving
nodal points on the cut plane (shown as patterned) are performed in both processors. The 15
nodes on the cut plane are referred to as shared nodes.

' The nodal forces consist of contributions from applied loads, contact interactions, and internal
deformations.

The internal force calculation for a shared node includes a contribution from elements in different
processors. Each processor calculates a partial nodal force for the elements in its processor. These
partial force contributions are communicated between the processors so that the total force
computed for a shared node is the same in all processors within the error introduced by the ordering
of the calculations. As much as possible, the ParaDyn algorithms are designed to store partial nodal
force data for shared nodes until all contributions to the nodal force have been computed before
communicating the shared data.

Research in applied mathematics has led to efficient techniques for subdividing or partitioning the
complicated unstructured meshes that arise in practical engineering applications [6-91. We use the
METIS software from the University of Minnesota to partition finite-element meshes and contact

Version 1.01 5

The Parallel Finite-Element Model ParaDyn User Manual

, (a) A simple finite-element mesh.

surfaces. (For more information on METIS, see http://www-users.cs.umn.edu/-karypis/metis/
main.shtml). The METIS algorithms use a graph to represent the finite-elemenbmesh.
Preprocessing software automatically produces the graphs needed for the mesh partitioning step.

Mesh partitioning is accomplished by representing a finite-element mesh as a graph. A graph has
vertices and interconnecting edges. The vertices and edges represent objects on the mesh. For
finite-element meshes, the vertices of the graph correspond to elements (zones) in the mesh and the
edges correspond to nodes in common between two connected elements. This is illustrated in
Figure 2.

Figure 2. A finite-element mesh and the graph representation of the mesh. (a) This simple mesh
consists of two materials, shaded and unshaded. The shaded material requires twice as much
calculation time as the unshaded material. (b) This is the graph of the mesh. The vertices are
represented as circles and the number near a vertex is the computational weight of the vertex.
The lines connecting the vertices are edges and represent the shared data between the vertices.
The number specified along the edges represents the number of shared nodes between the two
elements represented by the vertices.

The graph represents the element-to-element connectivity for the mesh. The METIS algorithms
find an optimal division of the graph corresponding to a specified number of subdomains. An
important aspect of graph partitioning techniques is the use of weighting factors for both the
vertices and edges. These weighting factors are used to balance the vertices into sets of roughly
equal weight and thus, provide intelligent input control over the partitioning of the mesh. To
illustrate this, the relative computational cost for a complex material model, a boundary condition
or any other expensive part of the calculation, can be used to weight the vertices. Similarly, an edge

Version 1.01 6

http://www-users.cs.umn.edu/-karypis/metis

ParaDyn User Manual The Parallel Finite-Element Model

in the graph represents the number of common nodes between the elements and can be
appropriately weighted by a relative measure of the shared data communicated if the graph is cut
on that edge. Figure 2b indicates the edge weights used for the few elements shown in Figure 2a.

The partitioning task is automated completely in the preprocessing tool, DYNAPART, for any mesh
geometry. This software was used for the assignment of a one-million element mesh to 128
processors as shown in Figure 3. The colors are used to show the processor assignment for
subdomains on the mesh. The mesh was developed to model a shock moving from the top vertex
of the mesh in the direction of the half-cylindrical cavity region located half way down and on the
left-hand side of the mesh. The mesh is zoned very finely at the top of the model to resolve the
shock structure. As a result of this fine zoning the subdomains are much smaller at the top of the
mesh than the subdomains on the lower part of the mesh where the zoning is coarse. The mesh lines
are not shown in the Figure.

Figure 3. Processor assignment for a one-million element mesh. Colors are used to
distinguish the subdomains assigned to 128 processors. This problem without sliding
interfaces scales linearly as the number of processors is increased up to roughly 1000
processors.

Version 1.01 7

Parallel Performance and Scalabilitv ParaDvn User Manual

2.3 Parallel Performance and Scalability

The time required to deliver results on a parallel computer is the sum of the time for computing
results on the processors and the time for communicating data between the processors.

where

-
‘wc - ‘calc + ‘comm

is the total elapsed time taken for the calculation (total wall clock time); ‘wc
‘calc is the elapsed time the processors spend computing results;
‘comm is the elapsed time the processors spend communicating shared data.

Ideally, if the number of processors is doubled, the rate for delivering results will be doubled. In
practice this linear scaling of the delivery rate with the number of processors breaks down when
the communication time becomes significant compared to the amount of time processors spend
computing results.

If the parallel calculation is efficient, the delivery time zwc , for N processors will be
approximately equal to 1 /N of the time for calculating the same results on one processor, z1 .
Thus, a measure of the parallel efficiency is given by the following:

P

P

The preprocessing software tools in DYNAPART provide convenient methods for selecting the
maximum optimal number of processors to use for a ParaDyn simulation. Using more processors
will result in no further improvement in delivering results and wastes computing resources.

The optimal number of processors to select for a parallel calculation without contact can be
estimated by specifying the minimum number of elements that can be allocated to a processor,
which results in a negligible amount of communication time (ideally less than 10%) compared to
the computation time for the deformation calculations. The statistics calculated by the partitioning
software provide quantitative values for determining the optimal number of processors. These
statistics will be discussed in the section describing the partitioning software tools. For current
models, an estimate for the minimum number of elements to assign to a processor is between 1000
and 2000.

Almost all problems of interest include contact interface definitions, which are always more
difficult to run. efficiently in parallel.

Version 1.01 8

ParaDvn User Manual Scalable Parallel Contact Algorithms

2.4 Scalable Parallel Contact Algorithms

Designing efficient parallel contact algorithms is challenging because the surface motion is often
unpredictable and new interfaces may appear dynamically. As a result, dividing the problem
domain into subdomains that are optimal for calculating the element deformations will almost
never result in an efficient division of the problem for the contact calculations. Hence, the ParaDyn
software uses partitioning methods for the sliding interfaces that differ from the partitioning for the
mesh. The results for the contact force calculations are communicated once in a timestep to the
processors defined by the mesh partition. Similarly the nodal position and velocity updates are
communicated from the processors defined by the mesh partition to the processors defined by the
contact partitions once in a timestep.

There are currently two parallel contact algorithms in the ParaDyn program [101 and selecting the
algorithm to use will depend on the predictability of the surface motion as well as the relative size
of the largest interfaces. In some problems, surfaces initially close together engage in small relative
motion and the contact remains in a localized region of the mesh. We refer to this as local contact.
Sliding interface types (1-3,5-10) in DYNA3DParaDyn are local algorithms. For other problems
with large deformation or moving parts, the motion of the surfaces is not predictable. Thus, more
sophisticated and computationally expensive searches for the surfaces in contact must be
performed throughout the simulation. We refer to this as arbitrary contact. Examples illustrating
arbitrary contact are a ball rolling on a plane, a surface folding on itself, or an automobile crash
simulation. Arbitrary contact is implemented in DYNA3D automatic contact interfaces, types 12
through 14. The automatic contact algorithm type 14 is the material erosion algorithm (SAND).

The parallel algorithm implementing local contact allocates a contact interface (both the master
surface and the slave segments or nodes) into one processor. This method is very efficient and
useful for problems with many contact surfaces that are relatively small. The method can limit the
scalability of the problem if there are large contact surfaces because the partitioning for contact
may require more elements in a processor than is efficient for an optimal mesh partitioning. In this
latter case, the problem can often be made more scalable by using the parallel automatic contact
algorithms described below.

The second parallel contact algorithm models arbitrary interface contact. The search for arbitrary
contact is implemented in the DYNA3D automatic contact algorithms. The method uses a set of
cells (buckets) for sorting and grouping surface nodes and segments into localized regions on the
mesh. The parallel version of the algorithm partitions the buckets among the processors to balance

Version 1.01 9

Scalable Parallel Contact Algorithms ParaDyn User Manual

the contact calculations among them and minimize the communication of nodes and surface faces
in cells with data that must be shared between processors. An additional step is needed in the
automatic contact algorithm when contact surface motion requires a regeneration of the cells and
sorting of the surfaces into the new cells. The frequency of the bucket-regeneration step is
automatically computed or, in some unusual situations, can be specified as a user input. In ParaDyn
the bucket-regeneration step induces extra communication during the timestep over which it
occurs. Thus, it is important to rebucket as infrequently as possible to avoid the extra
communication costs.

The arbitrary contact algorithms are referred to as automatic contact algorithms in the DYNA3D
documentation. The reason for this is that the faces on the contact surfaces are generated
automatically in DYNA3D and ParaDyn. This is in contrast to the older more tedious method in
which the contact interfaces are defined by the analyst when generating the mesh. For the large
meshes generated for parallel simulations this is an extremely time consuming task. Furthermore,
the contact interface definition is often a source of errors in the input file because of difficulties
encountered during the part-merging phase of the mesh generation.

The parallel contact algorithm in ParaDyn is selected by the DYNA3D sliding interface method
used for modeling the contact. Sliding-interface types (1-3,5-10) are implemented by assigning
each contact interface into a processor. Sliding interface type 11 (SAND) is not implemented in
parallel because the equivalent interface is modeled in the more robust and newer automatic contact
interface type 14. The single surface contact algorithm in type 4 is implemented as a full surface
assigned to a processor. A more general version of single surface contact is contained within
interface types 12 or 13.

Sliding interface types 12 and 13 are identical in their parallel implementation. However, type 13
provides options for controlling the search and other features as follows:

Boxes can be defined to limit the domain of the search;
Material can be included or excluded in the boxes for the search;
Faces defined as in a type 3 interface can be specified rather than automatically generated.

See the DYNA3D user manual in the keyword options section for a description of the input for
sliding interface type 13.

Version 1.01 10

ParaDyn User Manual Scalable Parallel Contact Algorithms

The most commonly used sliding interface in DYNA3D is type 3. The same physical interface
condition (sliding with friction and voids) can also be modeled with the automatic contact
algorithm types 12 andl3. The parallel efficiency for either choice for the sliding interface may
vary significantly depending on the details of the interfaces and the size of the model. The next
sections compare the two forms of parallel contact algorithms. These comments provide guidelines
for selecting which algorithm to use for an efficient parallel calculation.

2.4.1 Parallel Local Contact

The parallel local algorithm allocates each sliding interface fully in one processor. For more than
one sliding interface, the DYNAPART preprocessing software distributes the set of interfaces
among as many processors as possible. Special graph weighting methods are used for partitioning
the contact interfaces and evenly distributing the contact calculations among processors.
This algorithm is illustrated with the spin forming mesh shown in Figure 4. This model consists of
a rotating plate formed into a hemispherical shape by rollers in contact with the plate surface. A
four-processor partition for this problem cuts the plate into three concentric rings. The center ring
and brushes form the sliding interface and are fully contained in one processor. An eight-processor
partition for the problem cuts two of the rings in half. The sliding interface, the center ring and the
rollers, remains uncut.

The number of processors used for problems with local contact is often limited by the largest
sliding interface. If the surfaces on the largest interface contain many more elements than the
minimum number of elements that will provide a balanced calculation for the element deformation,
then the optimal number of processors for the calculation will be determined by the contact
calculations. A more subtle condition for large contact surfaces occurs when the partitioning cuts
the mesh one element below the surfaces in the sliding interface. This results in a large amount of
shared-node communication for processors with elements connected to the contact surfaces.

~~

Version 1.01

~

11

Scalable Parallel Contact Algorithms ParaDyn User Manual

Figure 4. Four and eight-processor partitions for a spin forming problem. The model
paritioned for four processors divides the plate into three concentric rings. The eight-
processor partition leaves the middle ring uncut.

2.4.2 Parallel Automatic Contact

For arbitrary contact defined with sliding interface types 12-14, the analyst avoids the very time
consuming task of defining the contact surfaces in the model. However, the parallel algorithm for
these interface definitions is more expensive for two reasons. First, the search for contact is an
expensive step, both on single processor computers and on parallel computers. Furthermore, for
problems with considerable surface motion, the parallel versions of these algorithms accrue
additional communication costs because the surfaces must be redistributed periodically among the
processors. This surface redistribution load balances the contact calculations.

The efficiency of the parallel automatic contact can be improved by limiting the search domains
with the DYNA3D keyword input options. Boxes may be used to delimit the search domains.
Boxes save the computer time and storage required for the bucket sorts on the full mesh. This can
save significant amounts of time for the large meshes designed for parallel computers. A further
efficiency improvement is achieved with boxes by reducing the number of materials searched in
each box using the material inclusiordexclusion options.

Version 1.01 12

ParaDvn User Manual Boundarv Conditions and Constraints

The parallel automatic contact algorithm is currently under very extensive development and
optimization. The largest effort underway now is to load balance the parallel automatic contact.
Until this effort and several other new techniques to optimize the algorithm are more complete, it
is recommended that data sets using automatic contact definitions be tested for performance before
use in production simulations. ParaDyn developers would be grateful for any benchmark tests that
demonstrate a need for improved optimization when using the automatic contact algorithm. In
return we will provide insights on modeling with the algorithms that may provide better
performance. We will also use the benchmarks to guide our algorithm development for optimizing
the method, particularly for models with rapidly changing surface topologies, nested surfaces, and
meshes with moving objects.

2.4.3 Concluding Remarks on Parallel Contact

For a complex mesh it may be beneficial to use both local and arbitrary contact algorithms and to
provide multiple instances for each type of contact. An obvious advantage in doing this is that the
regions on a mesh without any contact are not included in either the partitioning for local contact
or the search domains for arbitrary contact.

For problems with a relatively small amount of interface surfaces compared to the volume of
materials and with localized interfaces (types 1-3 and 5-10), the balance numbers provided by the
partitioning software can be used for selecting the number of processors to use. Furthermore, the
parallel efficiency may be determined by the size of the largest contact surface.

For efficient parallel arbitrary contact (automatic contact) it is very important to use DYNA3D
input options to limit the search domains. This algorithm is currently undergoing extensive code
development for parallel optimization.

2.5 Boundary Conditions and Constraints

Parallel versions of boundary conditions and constraints are treated both in the partitioning
software as well as in ParaDyn. Because the partitioning software uses special processing on
selected boundary conditions and constraints, it is important to know which boundary conditions
and constraints are treated with partitioning and how this affects the overall partitioning.

Version 1.01 13

ParaDyn User Manual Boundary Conditions and Constraints

The following DYNA3D options are treated with the partitioning software [4,10]:

Symmetry planes with failure
Nodal forces and follower forces
Nodal constraints
Tie-breaking shell slidelines
Tied node sets with failure
Rigid body joints
Shell-solid interfaces
Discrete springs, dampers and masses
One-dimensional slidelines.

-

These DYNA3D objects contain nodes and elements that must be assigned to a single processor
rather than divided across more than one processor. Nodes that need to be kept together are
assigned to Special Nodal Points (S N P) sets in the partitioning software. Associated with each of
the S N P sets is a Special Element (SE) set. The SE set consists of all elements that contain one or
more nodes in the corresponding SNP set. Each S N P set and its associated SE set must be fully
contained in a processor. As a result, large SNP or SE sets can constrain a mesh partitioning and
limit the number of processors that can be used for the problem. Reference [4] and the online
version provide examples.

Version 1.01 14

ParaDvn User Manual Boundarv Conditions and Constraints

Version 1.01 15

The ParaDvn Software Set ParaDIvn User Manual

~~ ~~ ~ ~ ~

Step 2. Mesh Partitioning

Determine the optimal number of processors to use.

3.0 ANALYSIS WITH PARADYN

Display results on a paral-
le1 computer.

An important consideration in our parallel algorithm development has been the requirement to
provide automated tools for developing models for parallel computers. Automated tools have been
developed for the new steps needed in either preprocessing the mesh or post-processing the binary
plot databases.This chapter describes the ParaDyn software and how to use it.

3.1 The ParaDyn Software Set

The steps for running a PaaDyn simulation are shown in Figure 5.

Display results on a work-
OR station.

Step 1. Mesh Generation

Generate the mesh with special attention given to contact.

Step 3. ParaDynAnalysis

Run the ParaDyn analysis.

Figure 5. Steps in preparing and running ParaDyn simulations.

The new preprocessing step for mesh partitioning is automated with script files, DYNAF'ART and
DYNAPARTAGAIN. These files and other new utilities for parallel simulations are summarized in
Figure 6.

The ParaDyn program is usually run with a utility, such as MPIRUN or POE, that copies the
executable to the processors on a parallel computer. Most large simulations are run using batch
processing software supplied by the Computer Center. Script files are often made available in
public file systems to automate batch runs.

Version 1.01 16

ParaDvn User Manual PATH Variable for ParaDyn

~~ ~ ~

File combiners: XMILICS Families by One family for state or
state and time his- COMBINETHS processor of time history data

1 tory data state or time
history data

There is a new step in post-processing of the binary databases with either state data or time history
data. This step involves combining the plot database families generated on each processor into a
single plot database family that can be viewed with GRE4 or THUG. The two utilities, XMlLICS
and COMBINETHS, are used for combining the state and time history plot databases, respectively.
GRIZ4 and THUG can be used to visualize the results on either a single node on the parallel
computer or on a workstation. Often for larger problems, the combined databases are transported
with FTP to a workstation for visualization.

Task

Mesh Partitioning

Parallel DYNA3D

The software products used for ParaDyn simulations are summarized in Figure 6. The next sections
describe these products in detail. The final section summarizes the steps for using ParaDyn
software and can be used as a handy reference once the details of each step are understood.

Software Input output

DYNAPUT DYNA3D input Partition map, plot file for

ParaDyn DYNA3D input Families of files: plothime
history output, restart, ...

DYNAPARTAGAIN the partitioned mesh

Partition map

Visualization GRIZ4, THUG State, time his- Screen display, RGB out-
tory databases put,

3.2 PATH Variable for ParaDyn

The directory containing ParaDyn software must be included in the list in the PATH variable. The
following SET PATH command added to the .cshrc file places the directory containing ParaDyn
software products into the path variable.

set path = (/usr/appshin/mdg $path)

Version 1.01 17

Partitioning a Model ParaDyn User Manual

3.3 Partitioning a Model

Before running ParaDyn, the model (including mesh, contact surfaces, constraints, and boundary
conditions) must be partitioned using DYNAPART. It is often desirable to partition the model
several times in order to select the number of processors to use for the model. The partitioning
software provides statistics for guiding this selection process. DYNAPART and a related tool,
DYNAPARTAGAIN, are script files which run several utilities for mesh and contact surface
partitioning. The statistical output is written into the logfile generated when running these script
files. Two utilties run within the scripts, METIS and PFGEN, produce the statistics for the
partitioning of the model.

Since the partitioning software generates a number of intermediate files in the current working
directory, running the partitioning scripts from a subdirectory is recommended. This conveniently
groups the files containing the results generated for each mesh that is partitioned. The DYNAPART
script is used the first time a mesh is partitioned. If the files from the first partitioning of a mesh are
not destroyed, DYNAPARTAGAIN can be used for subsequent partitioning of the same mesh for
a different number of processors. DYNAPARTAGAIN uses results saved from the DYNAPART
execution and consequently, can skip over some of the time consuming steps in the DYNAPART
script. It is very advisable to use DYNAPARTAGAIN when repartitioning a large model.

As a rule of thumb, an initial estimate for the optimal number of processors to use is roughly 2000
elements per processor. This estimate may be inadequate if contact surfaces, boundary conditions,
or nodal constraints are restricting the partitioning (See discussions in sections 2.4 and 2.5.)

The execute lines for DYNAPART and DYNAPARTAGAIN are identical. The first argument is the
name of the DYNA3D input file and the second argument is the number of processors requested
for the mesh partitioning.

dynapart infile np
dynapartagain infile np

The output from the mesh partitioning is a file that is referred to as the partition file. The name of
the partition file is in fknp . For the d3sumpl input file for DYNA3D, the file name for a four-
processor partition is d3sump1.4. The first several lines in the partition file contains partitioning
statistics for the problem and the remainder of the file contains the list of element and node
assignments to each processor. This file can be viewed with a text editor.

Version 1.01 18

ParaDvn User Manual Partitioning a Model

The partitioning scripts also generate a plot database that can be used to visualize the subdomains
of the partitioned model. The root name for the family of files is parplt. GRIZ4 can be used to
visualize this database. The result is a coloring of the mesh subdomains by processor and a
corresponding map of color values associated with the processors.

Caution: The database family, pniplt, is overwritten when the partitioning sciipts are run again in
the same directory. The database can be saved by renaming it before running the next partitioning
of the model.

The parallel efficiency for a particular mesh partitioning can be evaluated from statistics provided
on the screen or in a log file generated by the partitioning scripts. The METIS software calculates
and prints statistics for evaluating the quality of the partitioning. This output is listed as the
Balance number from METIS. The best balance is obtained when this number is as close as
possible to a value of 1.000. Other statistics indicating the quality of the partitioning are printed by
another tool, PFGEN, which is run by the scripts. The PFGEN output lists statistics about the
shared-node communication resulting from the partition. The Uniformity number output by
PFGEN measures the spread and the quantity of the communication among the processors. Again
the best value for the communication uniformity is a number close to 1.0. Figure 7 is an excerpt
from the screen output containing these statistics.

The balance and uniformity numbers do not provide a measure of the relative amount of
communication occuring within any given processor. These statistics can be obtained by inspecting
the partition file. The total number of nodes in a processor and the number of shared nodes in a
processor are listed in the first lines of the partition file. S e e Figure 8. For an efficient calculation
it is useful to keep the ratio of the number of shared nodes to the total number of nodes as small as
possible. Ideally this ratio would be ten percent or less.

Version 1.01 19

Partitioning a Model ParaDyn User Manual

Metis output statistics

PFGEN output statistics

-- Starting to generate the partition-assignment file.

Number of Number of
Node Adjacent

Communications Processors

Average per processor: 875.0 3.1
Max on any processor: 1520 5

Total on all processors: 14000 50

Uniformity: (max / average): 1.737 1.600

Figure 7. An excerpt from the screen containing Metis and PFGEN output statistics.

It may be convenient to save the screen output from the scripts into a file while also viewing the
results. The saved log file can be used to inspect the statistics as well as error messages generated
when the DYNAPART scripts are run. The UNIX TEE command can be used to do this as follows:

dynapart infle np I& tee infle.log

The details of the nodal communication (rather than averages) are listed in the first few lines of the
partition file, infZe.np. These can be conveniently examined with the UNIX HEAD command.

head -20 in$le.np

Version 1.01 20

ParaDyn User Manual Partitioning a Model

The results of this command are shown in Figure 9.

Example: Finding an optimal number of processors
This example illustrates the use of the mesh partitioning tools to find the optimal number of
processors to use for the first example problem included with the DYNA3D program.

Step 1. Set up a directory and partition the problem for two-processors.
The name of the input file is d3sampl. The directory for the partitioning is named partition.

mkdir partition
cd partition
In -s Jd3sampl d3sampl

The UNIX utility LN links the d3sarnpl file in a dfferent &rectory from the current &rectory
(partition) without making a copy. This saves disk space when when working with large files. It is
also convenient to use LN when making runs using the same input file and varying the number of
processors. This is the case when studying the scaling and efficiency for a model.

Execute DYNAPART the first time the mesh is partitioned.

dynapart d3sampl2

The output files from this partitioning are d3sampl.2 and the plot database, parplt. Next, visualize
the partitioned mesh with GRIZ4.

griz4s -i parplt

Step 2. Look at the statistics from the DYNAPART interactive session.
The statistics from PMETIS and PFGEN are shown in the excerpt from the log file in Figure 9.

Version 1.01 21

Partitioning a Model ParaDyn User Manual

Running PmTIS
.
METIS 2.0 Copyright 1995, Regents of the University of Minnesota

Graph Information _ - - - _ _ _ - _ _ _ - - _ _ - - _ _ _ - - _ -
Graph: d3sampl.grfal1, Size: 972, 19062, Parts: 2, Cto: 100

Options: SHEM, BGKLR, GGPKL, Rec-Partition

Recursive Partitioning... _______________-________________________-_
Edge-Cuts: -

2 -way
360

Balance: 1.000

Running PFGEN

_ _ Starting to generate the partition-assignment file.

Number of Number of
Node Adjacent

Communications Processors

Average per processor: 37.0 1.0
Max on any processor: 37 1

Total on all processors: 7 4 2

Uniformity: (max / average) : 1.000 1.000

++ Finished generating the partition-assignment file.

Figure 8. Partitioning statistics for a two-processor partition of the example mesh

Both of these statistics, the Metis Balance number and the Uniformity number written by PFGEN,
suggest that the problem may be efficient if more processors are used for the partitioning of the
model.

Version 1.01 22

ParaDyn User Manual Partitioning a Model

The following are the detailed statistics for the shared nodal data obtained by running the HEAD
command on the partition file, d3samp1.2. Notice that only 37 if the 486 nodes in each processor
are shared.

Detailed statistics from the partition file, d3samp1.2

bar impact problem (g-m cm microsec) 1NGDYl.dat 97 large
NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS

1369 972 0 0 0 2

Number of Nodal Points per Processor: Processors 0 to 1

Number of Hexagonal Elements per Processor: Processors 0 to 1

Total number of Shared Nodal Points per Processor: Processors 0 to 1

703 703

486 486

37 37

Number of Adjacent Processors per Processor:Processors 0 to 1
1 1

Figure 9. Total number of nodes, elements and shared nodes by processor for the two-processor
partition

Step 3. Use DYNAE'ARTAGAIN to partition the model for four processors.

dynapartagain d3sampl4

The partition file for this step is d3samp1.4 and the plot database for the partitioned mesh
overwrites the plot database for the previous partitioning.

The balance number from METIS for this partition is 1.000 indicating an even distribution of the
computing work and communication among the four processors. The uniformity statistic from
PFGEN shows that some processors have more communication. An inspection of the partition file,
d3samp1.4, shows two of the processors engage in twice as much communication as the other two.
The communicated nodes represent roughly 10% and 20% of the total number of nodes in the
individual processors. These results are shown in Figure 10.

Version 1.01 23

Partitioning a Model ParaDyn User Manual

Partitioning d3sampl for 4 processors

Running PFGEN
_- Starting to generate the partition-assignment file.

Number of Number of
Node Adjacent

Communications Processors

Average per processor: 55.5 1.5
Max on any processor: 7 4 2 -

Total on all processors: 222 6

uniformity (max / average): 1.333 1 .333

++ Finished generating the partition-assignment file.

Detailed statistics fram the partition file, d3sarqpl.4

bar impact problem (g m cm microsec) 1NGDYl.dat
NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS

1369 972 0 0 0 4

Number of Nodal Points per Processor: Processors 0 to 3

370 370 370 370

Number of Hexagonal Elements per Processor: Processors 0 to
243 243 243 243

88 large

3

Total number of Shared Nodal Points per Processor: Processors 0 to 3

37 7 4 37 7 4

Number of Adjacent Processors per Processor: Processors 0 to 3

1 2 1 2

Figure 10. Total number of nodes, elements and shared nodes by processor for the four-processor
partition

Step 4. Use DYNAPARTAGAIN to partition the mesh for eight processors.
This partitioning is most likely to be poor based on the four-processor partition. The results shown
below verify this.

dynapartagain d3sampl8

Version 1.01 24

ParaDyn User Manual File Name Sequences

The METIS balance statistic is 1.004 when the model is partitioned for 8 processors. Nevertheless,
an inspection of the partition file shows that the number of shared nodes per processor varies
between 22% and 40% of the total number of nodes in each processor. This is an unacceptably high
amount of communication. The statistics in the partition file are shown below.

We can conclude from the partitioning for two, four and eight processors that the optimal number
of processors to use for this problem is four.

Detailed statistics from the partition file, d3samp1.8

bar impact problem (g m cm microsec) 1NGDYl.dat
88 large
NNPS NHEXS NBEAMS NSHELLS NTSHELLS NPROCS

1369 972 0 0 0 8

Number of Nodal Points per Processor: Processors 0 to 7

Number of Hexagonal Elements per Processor: Processors 0 to 7

209 206 208 208 209 2 07 209 2 07

122 1 2 1 122 1 2 1 122 121 122 1 2 1

Total number of Shared Nodal Points per Processor: Processors 0 to
82 82 83 46 46 83 83 83

Number of Adjacent Processors per Processor: Processors 0 to 7
2 2 2 1 1 2 2 2

7

Figure 11. Total number of nodes, elements and shared nodes by processor for the eight-processor
partition

3.4 File Name Sequences

The names of restart files and plot databases generated in a ParaDyn run are different from those
for a DYNA3D simulation.The names are lengthened to include a processor number in the string
for the root name for the database. More generally, each processor generates a set of files equivalent
to a DYNA3D run on a single processor. The files are distinguished from the standard set in a
DYNA3D run by a shortening of the root name to three characters and the inclusion of a processor
number in the string for the name. For a problem running on 1000 or more processors, the length
of the string appended to the root name is adjusted to accommodate the number of digits contained

Version 1.01 25

ParaDyn Command Lines ParaDyn User Manual

PO P1
m-pO00A m-pOO1A
m-PO00 m-PO01

in the number of processors used. For example, for 1024 processors, four digits are added to the
root name. Similarly for 10240 processors, five digits are added to the root name.The plot database
names shown in Figure 12 are the default names generated for MIL1 state database files for a
problem with less than 1000 processors.

p2 p3

m-pO02A m-pO03A
m-pOO2 m-pOO3

m-pOOOO2

...

...

I m-pOOOO1 I m-p00101 I m-p00201 I m-p00301

m-p00 102 m-p00202 m-p00302

...

...

PO P1 p2

I m-pOOO99 I m-pOO199 1 m-pOO299 I m-pOO399

p3

1 2. Restart database names: Root names dmp

dmpOOOp0 1

dmpooop02

dmpOOlp0l dmpOO2pO 1 dmpOO3pO 1

dmpOO lp02 dmpOO2pO2 dmp003p02

PO Pl p2

1 dmpOOOpO3 I dmpOOlpO3 I dmp002p03 1 dmp003p03

p3

I 3. Text output file names

frc000 frc00 1 frcOO2 frcOO3

d3hsp I d3hsp001 I d3hsp002 I d3hsp003

3.5 ParaDyn Command Lines

The partition file must be copied into a file named partjile before executing ParaDyn. Do not
remove the original partition file. You can also use a soft link if the files are big. This is explained
in the examples. The partition file is used with the post-processing software.

~ ~~

Version 1.01 26

ParaDyn User Manual ParaDyn Command Lines

The ParaDyn execute line arguments are identical to the DYNA3D execute line. The restarts for
ParaDyn likewise use the same execute line as those used in executing a DYNA3D restart.
The command lines for a ParaDyn initial run and a restart execution are illustrated in the following
two examples.

paradyn i=injile I=Jilelength
paradyn i=restart r=dumpfile l=filelength

paradyn i=inJile q=nseconds
paradyn c=lastdump q=nseconds

The first set of execute lines uses the standard input lines for restarts described in the DYNA3D
manual. The second set of execute lines illustrates a restart method which starts from the last
successfully written restart file.

Caution: The standard output files, (d3hsp, d3hsp0001, ...) are overwritten when a subsequent run
is made in the same directory. It is generally a good practice to at least save the file d3hsp into a
different name between restarts of the problem. This output file, d3hsp, usually has results that are
of value at the end of a long sequence of restarts. For instance, filenames, input options, and
dynamic relaxation results are written into the file d3hsp.

The c= option specifies the name of a file which is always lastdump. ParaDyn generated the
lastdump file at the end of the most recent run made in the directory. ParaDyn writes one line in the
lastdump file. This line conains the name of the dump restart file which has the last successfully
written state data. This is a very important option to use on some parallel computers, particularly
the ASCI Blue computer at LLNL.

Notice that it is not necessary to specify an input file for a restart execution. If the input file is not
specified, all input options will remain the same as those specified in the preceding run. These
values from the previous run are stored in the restart dump file and read in during the input phase
of the restart run.

The q option provides a capability for terminating a problem on the ASCI Blue Pacific system. The
value, in seconds, specifies the number of seconds (by the wall clock) to run the ParaDyn
simulation before ParaDyn stops itself with a normal termination. This option is often used to allow

Version 1.01 27

ParaDvn Command Lines ParaDyn User Manual

the analyst to specify a wall-clock termination time slightly shorter than the batch time he selects.
The extra time allows for final file writes and close operations for the database families and other
output files.

The 1= option provides a method for increasing the maximum file length for each member of a
database family of plot files. The size specified is in units of Megabytes. Caution: If the file length
option is used on the initial ParaDyn run, it must be used on all subsequent restarts.

Example: Execute lines for ParaDyn
Consider an initial ParaDyn run using the DYNA3D input file, d3sampland a restart run using an
input data file, irestart. Following the naming convention in Figure 12, the initial run and restart
run are executed with the following ParaDyn input arguments.

paradyn i=d3sampll=lO
paradyn i=irestart r=dmp000p011=10

Notice, the file lenth is specified on both the initial run and on the restart.

This next example illustrates the use of the q= termination option.

paradyn i=d3sampl q=3000 1=100
paradyn c=lastdump q=3000 1=100

This problem will be submitted to batch to run for one hour (3600 seconds) and ten minutes before
the end of the run (afer 3000 seconds) ParaDyn will call the termination routine to close files and
exit. The maximum length of the files in the plot databases is set to 1 0 0 Megabytes. The name of
the restart file is the name listed on the first line of the file named lastdump.

3.5.1 ParaDyn Run Interactively

ParaDyn can be run interactively using the POE utility on an ASCI Blue computer at LLNL. This
system has four processors per node and five hundred or more nodes. The POE utility runs ParaDyn
with an input specifying the number of nodes and optionally, the total number of processors. The
options for specifying the number of nodes and processors are inserted between the ParaDyn
command and the execute line options for ParaDyn. If only one processor per node is being used,
then it is sufficent to simply specify the number of nodes as follows:

Version 1.01 28

ParaDyn User Manual ParaDyn Command Lines

poe paradyn -nodes numnodes executeline

More than one processor per node can be used by specifying the number of nodes with -nodes and
the total number of processors with -procs.

poe paradyn -nodes numnodes -procs np executeline

Example: Interactive ParaDyn run on the ASCI Blue Pacific
The following are command lines for executing ParaDyn with the DYNA3D test case 1 as an input
file and using either four or five processors.

poe paradyn -nodes 4 -procs 1 i=d3sampl
poe paradyn -nodes 1 -procs 4 i=d3sampl4
poe paradyn -nodes 2 -procs 5 i=d3sampl4

The first example above will run using one processor on each of four nodes. The second example
will run with four processors on one node. The third example will run on two nodes using five of
the eight processors.

ParaDyn can be run interactively using the MPIRUN utility on an Origin 2000 computer. The
MPIRUN utility runs ParaDyn for np processors as follows.

mpirun -np np paradyn dyna3d execute line

Example: Interactive ParaDyn run on the Origin 2000
The following is the command line for executing ParaDyn with the DYNA3D test case 1 as an input
file and using 4 processors.

mpirun -np 4 paradyn i=d3sampl

3.5.2 ParaDyn Run with Batch

ParaDyn production simulations are run under the DPCS batch processing system on the ASCI
Blue computers at LLNL. To set up a problem for batch, a script file is prepared and then submitted
to the batch system with the PSUB utility. Lines included in a typical script file for a ParaDyn
simulation are shown in Figure 13.

Version 1.01 29

Visualizing ParaDyn Results ParaDyn User Manual

The script file is submitted to batch for processing using the PSUB utility.

psub scrip@Ze

Use the PSTAT utility for interrogating the status of runs submitted with PSUB. A status of RUN
indicates the job is running on the parallel computer. Q p e SPJSTAT to further check on the status
of the run after PSTAT indicates it is in a RUN state.The online MAN pages can be viewed to study
other options provided by the PSUB and PSTAT utilities.

~

PSUB -eo
PSUB -tH 2:oo
PSUB -In 8

Job is to run for a maximum of 2 hours

PSUB -g 32
printenv
echo "started at"
date
cd /p/gE/loginname/dynatests
Allow 10 minutes (600 seconds) for file cleanup
poe paradyn i=dynin q=6600 1=100
echo "ended at"
date

Figure 13. A typical batch script file for a ParaDyn simulation

3.6 Visualizing ParaDyn Results

There are two choices for post-processing the state database output from a ParaDyn analysis. First
the database families from the processors must be combined with the utility XMILICS. Then the
results may be viewed on the parallel computer with GRIZ4. Alternatively, the combined database
families may be transported to a workstation and viewed with GRIZ4.

Version 1.01 30

ParaDvn User Manual Visualizing ParaDyn Results

There are some tradeoffs to be made in selecting either of these choices. For large problems
particularly, the rendering and the display of a frame sent over a network to a workstation can be
as long as twenty or thirty minutes. In this case better interactivity is possible by using FTP to send
the combined database over to a local workstation. The additional resources needed for this
improved interactivity are twice the disk space on the parallel computer, a workstation with high-
speed graphics capabilities, and enough disk space on the workstation for the full database. Even
with this additional hardware, the viewing of results is delayed by the time it takes to FTP the
databases to the workstation. In the future, parallel rendering and visualization tools will become
available that will eliminate some of these delays.

3.6.1 MILI Database Files

MILI plot databases are new. The format for the MILI databases provide a considerable amount of
flexibility for designing material templates that display results specific to each material type as well
as the flexibility for selecting which state data fields should be included in a database generated by
a parallel analysis. Equally as important, the menus in GRIZ4 will reflect those data fields, result
fields, and names which have been written into the MILI files. GRIZ4 must be used for displaying
MILI plot databases.

Recent code development in both ParaDyn and DYNA3D require the use of the MILI database
format. In addition, the MILI databases have been extensively tested in large benchmarks and in
production runs at both Livermore and Los Alamos. For these reasons, we encourage their use. The
old TAURUS database format used with ParaDyn is described in Section 4.5.

The use of GRIZ4 is also strongly recommended because of its expanded capabilities to handle the
menu- generation for MILI databases. In the future, Mili database formats will be developed to
provide many new features for material models, to display new results (not currently in TAURUS
databases), to highlight boundary conditions, and to provide flexibility for limiting the size of
parallel databases.

The MIL1 database software was released with ParaDyn version 1.01 and will be the default
database type in future versions of ParaDyn. In addition, it is possible to select one or both database
formats in the keyword control options input section of the input file. The keyword specification is:

mili-plot milijlag
endfree

Version 1.01

Visualizing ParaDvn Results ParaDyn User Manual

The value of the flag is set to 1 to select the MIL1 database format and is set to 0 to deselect the
database type.

Example: Specify MIL1 for the plot database format in a ParaDyn analysis.
Add the following keyword input to the keyword control options section of the input file.

mili-plot 1
endfree

3.6.2 Combining Parallel Databases
-

The utility XMILICS combines the state database from a ParaDyn run. The combined databases
can then be viewed with GRIZ4. The execute line for XMILICS is

xmilics -i infileroot -0 outfleroot -c partfile

The first argument is the root name for the families of state databases and the second argument is
the root name for the output files with the combined databases. The third argument is the name of
the partition file.

The utility COMBINETHS combines the time history database from a ParaDyn run. The combined
time history database can then be viewed with the THUG uility. The execute line for
COMBINETHS is

combineths inJleroot outfleroot partfile 0 0

The first argument is the root name for the families of time history databases and the second
argument is the root name for the output files with the combined databases. The last two arguments
must both be 0.

Example: XMILICS and COMBINETHS execute lines

xmilics -i m-p -0 mout -c partfile
combineths plt oplt partfile 0 0

See Figure 14 for the list of output files generated with each combining utility.

Version 1.01 32

ParaDvn User Manual Summarized Steps for Using ParaDyn

XMILICS output f i l es
moutA, mout00, moutol, mout02, mout03 ,.....,

COMBINETHS output f i l es
otht00, otht01, otht02 ,....

Figure 14. The names of files in output databases from XMILICS and COMBINETHS.

On the workstation or the parallel computer, these databases are viewed with the GRIZ4 and
THUG utilities.

griz4s -i mout
thug -i otht

3.7 Summarized Steps for Using ParaDyn

Step 1. Set the PATH variable for the ParaDyn software.

set path=(/usr/apps/bin/mdg $path)
This line is added in the .cshrc file the first time the software is used.

Step 2. Partition the mesh.

mkdir partition
cd partition
In -s Jd3sampl d3sampl
dynapart d3sampl2
dynapart d3sampl4
dynapart d3sampl8
mv d3samp1.2 d3samp1.4 ../
cd ..

Make a directory for partitioning. Find the optimal number of processors for the run.

Step 3. Execute ParaDyn initial and restart runs

mkdir rundir
Make a directory for the simulation. Link the input and partition files into the directory.

Version 1.01

~-

33

Summarized Steps for Using ParaDyn ParaDyn User Manual

cd rundir
In -s Jd3sampl d3sampl
In -s Jd3sampl.4 partfile
paradyn i=d3sampl

mv d3hsp hsprunl
paradyn i=irestart d=dmp000p01
mv d3hsp hsprun2

Save the d3hsp output file between restarts. Input new options with the file irestart.

Use the Zastdump file to get the name of the last successfully written restart dump file. There are no
resets of the input options for the next restart.

paradyn c=lastdump

Step 4. Visualize the results.

xmilics -i m-p -0 mout -c partfile
combineths tht otht d3samp1.4 0 0

Combine the state database and the time history databases.

Move the combined state and time history databases to the workstation, if desired. View the results
on either computer.

griz4s -i mout
thug -i otht

Version 1.01 34

ParaDyn User Manual Summarized Steps for Using ParaDyn

Version 1.01 35

Static Initialization and Dynamic Analysis ParaDyn User Manual

4.0 INPUT FOR PARALLEL SIMULATIONS

This chapter describes data input and special instructions used for parallel simulations only.
Instructions for running multiple ParaDyn analyses and special instructions for post-processing
results written to text files are described here.

4.1 Static Initialization and Dynamic Analysis

Dynamic relaxation and stress initialization techniques are described in the DYNA3D manual. The
following example shows one method for initializing a problem with a load, generating the stresses
from a relaxation procedure, and starting a time dependent simulation. Three runs are used for this
procedure.

Step 1. Run the relaxation step first.
This feature is activated by a flag on the load curve definition cards in the standard DYNA3D input.

paradyn i=inputl

This creates two dump files for each processor. For processor zero, they are dmpOOOpOl and
dmpOOOpO2.

Step 2. This step generates a stress output file.
Restarting the previous run for one time step to generate the stress file.

paradyn i=restart r=dmp000p02

This run creates the stress file, d3sppp, where ppp is the processor number.

Step 3. This steps runs a dynamic analysis using the stress file from the static initialization.

paradyn i=input2 n=d3s

Version 1.01 36

ParaDyn User Manual The NIKFLDYNA Link File

4.2 The NIKE-DYNA Link File

The NIKE-DYNA link file is often used to start up a new run using stress results from a previous
run on the same mesh. The details for this technique are described in section 2.19 of the DYNA3D
manual. The first run to generate the stress file must include the following free format input to
generate the output database with the stresses. The root name for the link file is specified on the
following keyword input line.

nikefile stressfiile
endfree

A ParaDyn execution with this input selecting the name, str, for the NIKE-DYNA link file will
create database families for each processor labeled

str001, str002, ... strppp, ...

where ppp is the processor number.

A second run uses the same input mesh but other parameters in the input, such as load curves, may
be changed. (Although the control options can be changed, it is not a requirement, and the same
data input file can be used for both runs.) The second run reads the stress databases, stores the stress
data, and uses the deformed nodal coordinate values from the first run. Other parameters associated
with the original run may also be set and are described in the section Keyword-Based Control
Features of the DYNA3D manual.

Example: Generate a NIKE-DYNA link file with ParaDyn

Consider a run with an input file, d3st, specifying the name stress on the nikefile keyword-input
line. A second run will use the generated stress database by specifying the m= option on the
execute line and new DYNA3D options in the input file, d3stl.

paradyn i=d3st
paradyn i=d3stl m=stress g=glt

In the second run, the plot state database file family is given a new root name, gEt.

Version 1.01 37

Multiple Versions of Running Restart Files ParaDyn User Manual

4.3 Multiple Versions of Running Restart Files

The following describes a new capability for generating multiple versions of a running restart dump
file. The option is selected with a keyword input and optionally specifying the running restart file
names on the ParaDyn execute line. The keyword input is

numrrf m e n

The integer value, nvers, specifies the number of different versions of the running restart file to
save on disk. The running restart family names are incremented through a set of family members
until nvers of them have been written. Once this limit is reached the next running restart over writes
the first running restart file in the set. The examples below illustrate the cycling through of the
names of the versions of the running restart files.

The number of cycles between the running restart dump files is selected as usual in the fifth data
field, columns 36-40, of DYNA3D control card 6. The default names for the running restart file for
ParaDyn are rsfnnnrnrn, where nnn is the three-digit processor number and mm is the family-
member number. To select the name of the running restart file, use the a= option on the ParaDyn
execute line.

Example: Specify multiple versions of the running restart file

Set up the input file to save three different versions of the running restart file.

numrrf 3
endfree

Suppose a problem is run for 100 cycles and the number of cycles between running restart dumps
is 30. The files generated for a 4-processor run will be:

rsfOOOO1 rsfOOlOl rsf00201 rsf00301
rsf00002 rsf00102 rsf00202 rsfOO302
rsf00003 rsfOO103 rsf00203 rsf00303

(cycles 30)
(cycles 60)
(cycles 90)

Suppose this problem is run for another 150 cycles, then the running restart files will be

Version 1.01 38

ParaDyn User Manual Nodal Force Output

rsf00002 rsfOO 102 rsf00202 rsf00302
rsfOOOO1 rsfOO101 rsf00201 rsf00301
rsf00003 rsfOO103 rsf00203 rsfOO303
rsfOOOO1 rsfOOlO1 rsf00201 rsf00301
rsf00002 rsfOO 102 rsfOO202 rsf00302

(cycle 150)
(cycle 120)
(cycle 180)
(cycle 210)
(cycle 240)

In the above, the cycle (30,60,90) files were over written by the cycle (120, 150, 180) files,
respectively. And finally, the cycle (210,240) files over write the cycle (120, 150) files.

Example: Select a new name for the running restart files
Suppose instead in the previous example that the initial problem is restarted from cycle 60 and runs
up to cycle 250. A new name can be selected for the versions of the running restart files as follows:

paradyn i=inrest,r=rsf00002,a=nrf

The files generated will be

nrfOOOOl nrfOOlOl nrf00201 nrf00301 (cycle 90)
nrf00002 nrf00102 nrf00202 nrf00302 (cycle 120)
nrf00003 nrf00103 nrf00203 nrf00303 (cycle 150)
nrfOOOOl nrfOOlOl nrf00201 nrf00301 (cycle 180)
nrf00002 nrf00102 nrf00202 nrf00302 (cycle 210)
nrf00003 nrf00103 nrf00203 nrf00303 (cycle 240)

4.4 Nodal Force Output

The nodal force output is described in the keyword input and Section 4.47 of the DYNA3D input
manual. Nodal force output is selected using the keyword input variable nfrout. The value of this
keyword input variable is the total number of nodes’that will be written into the output files.

Output format
For each time at which the nodal forces are desired, the following set of data are written:

Card 1 (E12.5,lx,i8)
Col. 1-12 Time at which forces have been computed E12.5

Version 1.01 39

Nodal Force Output ParaDyn User Manual

Col. 14-20 Number of nodes (nfrout) I8

Cards 2 to Card l+nfrout (i8,3e12.7)
Col. 1-8 Nodenumber I8
Col. 9-20 Force in the x-direction E12.5
Col. 21-32 Force in the y-direction E12.5
Col. 33-44 Force in the z-direction E12.5

The name of the text output file containing the nodal force data is nodfrc for a DYNA3D run.

ParaDyn generates two kinds of text output files. The first output file (generated by processor zero
only) contains the times at which the forces are output for the selected nodes. The name of this file
is nfrctimes. The remaining output data, the node numbers and three components of the force, are
written to a set of files generated by all of the processors. The files are named nfrcnnn, where nnn
is the three-digit processor number. By separating the data in this way, the following UNIX utilities
can be used to combine the data into a single file, with the time steps for the output at the top,
followed by the list of nodes and forces for each time step.

cat nfrc* I sort -n - > forceout

Example: Combine nodal force output from ParaDyn
The following is an example in which two nodes, (12,144), were selected and written at three
different time steps. The nodes were merged using the files from the processors with the previous
CAT and SORT utilites. The results are

0.00000E+00 2
0.446273-06 2
0.893443-06 2

12 O.OOOOOE+OO 0.00000E+00 O.OOOOOE+OO
12 0.00000E+00 0.00000E+00 0.00000E+00
12 0.00000E+00 0.00000E+00 O.oooooE+oO
144 O.OOOOOE+OO O.OOOOOE+OO -0.14000E-11
144 O.OOOOOE+OO O.OOOOOE+OO -0.14000E-11
144 O.OOOOOE+OO O.OOOOOE+OO -0.15000E-11

~ ~

Version 1.01 40

ParaDvn User Manual TOPAZ3D Temperature Input

To eliminate the time stamp data at the beginning of the file (and read it from the file nfrctimes
instead in a post-processor), use the following UNIX utilities for combining the output.

cat nfrc??? I sort -n - > forceout

4.5 TOPAZ3D Temperature Input

The TAURUS database with nodal temperature data generated by the TOPAZ3D program can be
input to a ParaDyn simulation. Input options are completely compatible with the DYNA3D/
TOPAZ3D temperature input options. The restriction for using this feature is that the same mesh
must be used for both programs.

In the future we expect to develop a MIL1 database to link TOPAZ3D and DYNA3DRaraDyn. The
utility XMILICS currently has the capability to both combine and split MILT databases into a
specified number of processors. This will allow a link between a parallel or single processor
TOPAZ3D simulation and a ParaDyn simulation where the number of processors used for each
code is not restricted to be the same.

4.6 TAURUS Database Files

Many of the new ParaDyn code developments require the use of the flexibile file formats provided
by the MILI YO library. For this reason, TAURUS databases are no longer generated by default in
ParaDyn. Keyword input may be used to select TAURUS databases for those special circumstances
where they may be needed. An example may be a restart from an older run ParaDyn run. The file
name sequences for TAURUS databases is shown in Figure 15.

TAURUS plot databases are selected in the keyword input section of the DYNA3DRaraDyn input
file. Both MIL1 and TAURUS databases can be output in the same mn. This capability is usually
used by the code developers and not recommended for long analysis runs. The following two
keywords select and deselect the TAURUS and MILI databases.

mili-plot miZijZug
taurus-plot taurusflag
endfree
The value of either flags is set to 1 to select the database type and is set to 0 to deselect the database

type.

Version 1.01 41

TAURUS Database Files ParaDyn User Manual

1. State and time history databases: Root names plt and tht

aming convention
during a ParaDyn simulation.

I

The PGRIZ utiltity is only available on the Livermore computer systems. This utility combines the
TAURUS databases in memory when visualizing the plot files on the parallel computer. The
execute line for the PGRIZ tool is

pgriz -i filename -p partjile 0 0

The first argument,fiZename, is the full name of the first file in the database family for processor 0.
The second argument, partfile, is the name of the partition file. The last two arguments are always
set to zero.

Example: PGRIZ execute line
An example input line for the test case in the previous example is

pgriz -i plt -p d3samp1.4

The utilities XMILICS and COMBINETHS combine the Taurus state and time history databases
from a ParaDyn run. The state databases can be viewed with GRIZ4 and the time history databases
with THUG.

The XMlLICS execute lines is

Version 1.01 42

ParaDrn User Manual TAURUS Database Files

xmilics -i injileroot -0 outJileroot -c partjile

The first and second arguments are the root names of the input TAURUS database and the
combined output MIL1 database. The third argument is the name of the partition file.

The COMBINETHS execute line is

combineths infileroot outjileroot partJiZe 0 0

The first argument is the root name for the input families of time history databases and the second
argument is the root name for the output family of files with the combined databases. The last two
arguments must both be 0.

Example: XMILICS and COMBINETHS execute lines
Consider the state and time history databases for the previous four-processor example. The root
names for the plot databases and time history databases are plt and ths, respectively. The following
execute lines will generate an output family of files with the root names oplt and oths, respectively.

xmilics -i m-p -0 oplt -c d3samp1.4
combineths tht otht d3samp1.4 0 0

XMILICS output files
rnoutA, mout00, rnoutol, mout03,

COMBINETHS output files
otht00, otht01, otht02 ,....

Figure 16. The names of files in output databases from XMILICS and COMBINETHS.

On the workstation, these databases are viewed with the GFUZA and THUG utilities.

griz4s -i oplt00
thug -i otht

Version 1.01 43

TAURUS Database Files ParaDyn User Manual

Version 1.01 44

ParaDyn User Manual FUTURE ENHANCEMENTS

5.0 FUTURE ENHANCEMENTS

Parallel algorithm design is an integral part of the software development cycle for the DYNA3D/
ParaDyn software. The Design Phase includes the design of the approximate technique for the
mechanics, the algorithm design for single processor computers, and the complementing design for
parallel computers. Once a design is in place, frequently the software development proceeds with
a serial (DYNA3D) implementation and testing. This then is followed by a parallel implementation
and testing. The following features implemented in DYNA3D are future enhancements to the
ParaDyn software.

1. Contact algorithms
LaGrange constraint forms of contact.

2. Rigid body algorithms
Deformable and rigid material switching algorithm.

3. Boundary conditions
Rigid nodal constraint sets.

4. New elements
Cohesive and delaminated elements.

There are two DYNA3D features which will not be implemented in parallel as follows:

1. Coupled codes
Madymo DYNA3D link capability.

2. Contact algorithms
Slide line type 11. This algorithm is an obsolete version of the SAND algorithm. The replacement
algorithm in sliding interface type 14 is implemented in parallel.

Version 1.01 45

REFERENCES DYNASD User Manual

REFERENCES

1. , Lin, Jerry I., “DYNA3D: A Nonlinear, Explicit, Dimensional Finite Element Code for Solid
and Structural Mechanics-User Manual,” Lawrence Livermore National Laboratory,
Livermore, California, UCRL-MA- 107254 Rev. 2,1999.

2. Speck, D. E., Dovey, D. J., “GRIZ: Finite Element Analysis Results Visualization for
Unstructured Grids-User Manual,” Lawrence Livermore National Laboratory, Livermore,
California, UCRL-MA-115696,2000.

3. Speck, D. E., “MILL A Mesh I/O Library-Programmer’s Reference”, Lawrence Livermore
National Laboratory, Livermore, California, UCRL-MA (in publication) 2000.

4. Shenvood, Robert J., “DynaPart Auxiliary Documentation Files”, Lawrence Livermore
National Laboratory, Livermore, California, UCRL-ID- 137888,2000.

5. Schauer, D. A., Hoover, C.G., Kay, G. J., Lee, A.S., and De Groot, A.J., “Crashworthiness
Simulations with DYNA3D”, Paper No. 96 1249, Transportation Research Board, 1996.

6. Karypis, G. and Kumar, V., “METIS 3.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System,” University of Minnesota, Department of Computer Science, 1997. See
also http://www-users.cs.umn.edu/-karypis/metis/main.shtml.

Irregular Graphs,” SIAM Journal on Scientific Computing, 1998. A short version appears in
Intl. Conf. on Parallel Processing, 1995.

Journal of Parallel and Distributed Computing, 1997.

Mapping Parallel Computations,” Sandia National Laboratory Report Number SAND92-
1460,1992.

7. Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning

8. Karypis, G. and Kumar, V., “Multilevel k-way Partitioning Scheme for Irregular Graphs,”

9. Hendrickson, B. and Leland, R., “An Improved Spectral Graph Partitioning Algorithm for

10. Hoover, C.G., Badders, D. C., De Groot, A.J., and Sherwood, R. J., “Parallel Algorithm
Research for Solid Mechanics Applications Using Finite Element Analysis,” Lawrence
Livermore National Laboratory, Livermore, California, UCRL-ID-129202,1997.

Version 1.01 46

http://www-users.cs.umn.edu/-karypis/metis/main.shtml

	PREFACE
	ABSTRACT
	1.0 BACKGROUND
	OVERVIEW OF PARADYN
	INTRODUCTION
	THE PARALLEL FINITE-ELEMENT MODEL
	PARALLEL PERFORMANCE AND SCALABILITY
	SCALABLE PARALLEL CONTACT ALGORITHMS
	PARALLEL LOCAL CONTACT
	PARALLEL AUTOMATIC CONTACT
	CONCLUDING REMARKS ON PARALLEL CONTACT

	BOUNDARY CONDITIONS AND CONSTRAINTS

	ANALYSIS WITH PARADYN
	THE PARADYN SOFTWARE SET
	PATH VARIABLE FOR PARADYN
	PARTITIONING A MODEL
	FILE NAME SEQUENCES
	PARADYN COMMAND LINES
	PARADYN RUN INTERACTIVELY
	PARADYN RUN WITH BATCH

	VISUALIZING PARADYN RESULTS
	DATABASE mES
	COMBINING PARALLEL DATABASES

	SUMMARIZED STEPS FOR USING PARADYN
	INPUT FOR PARALLEL SIMULATIONS
	STATIC INITIALIZATION AND DYNAMIC ANALYSIS
	4.2 THE NIKE-DYNA LINK FILE
	4.3 MULTIPLE VERSIONS OF RUNNING RESTART FILES
	4.4 NODAL FORCE OUTPUT
	4.5 TOPAZ3D TEMPERATURE INPUT

	4.6 TAURUS DATABASE FILES
	5.0 FUTURE ENHANCEMENTS

	REFERENCES
	Version

